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Abstract 

This research investigates, via simulation, the bit error probability (BEP) associated 

with a variable redundancy coding scheme operating in a wireless communications 

environment.  Within a slowly varying (flat fading) Rayleigh channel, adaptive algorithms 

provide increased throughput over fixed coding implementations.  From a family of BCH 

codes of the same block length (n=63), a code with appropriate redundancy is chosen 

depending on the receiver's estimation of the current conditions experienced in this channel. 

Two different decision techniques are compared. The first method statistically evaluates the 

receiver's input and calculates the signal to noise ratio (Eb/No), while the second method 

observes the number of corrected errors in recently decoded blocks. With this information, 

the adaptive system decides to modify the correction ability of the code, and then transmits 

this decision to the encoder over a low bandwidth feedback channel. The correction ability 

can be changed on a block by block basis. This algorithm is implemented in software and, 

therefore, can be optimized for many real world communications systems. The low cost of 

high speed microprocessors and DSPs allows for the development of a robust adaptive 

coding system in hardware. The results are compared against fixed coding implementations 

and show that the adaptive process maintains a better efficiency (r| = k/n) of information rate 

while keeping the bit error probability near the level obtained by maximum encoding. 

Keywords: Variable Redundancy, Rayleigh Fading Channel, BCH Codes, Forward Error 

Correction, Channel Estimation, Adaptive Coding. 
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1. Introduction 

As the amount of digital data has exponentially increased in recent years, it is more 

important to provide efficient data rates while keeping high data integrity. It is impractical 

to maintain a very low bit error probability (BEP) with fixed error correction systems. BEP 

is calculated by taking the total number of bit errors and dividing by the total number of bits 

of transmitted data. When redundant bits are combined with data, less data is transmitted per 

message, thereby increasing the necessary time for transmission by up to a factor of nine. 

In simulation this is the difference between transmissions with an efficiency of 100 percent 

and those with 11 percent efficiency due to maximum levels of error correction. An example 

of the tradeoffs made in a specific application is that of P-3 Orion aircraft crews operating 

in mission situations. Because of the increased transmission time, these crews often tend to 

turn off error-control devices when transmitting digital pictures. They are willing to send 

degraded images rather than wait for the extremely slow transmission which occurs when 

using the correction scheme [7]. This inverse relationship between data reliability and 

efficiency is a focus of modern digital communications. Reliability is determined by the 

error correction ability of the system, while efficiency is determined by the transmission rate 

of the original data. The goal of this research is to develop and implement an adaptive 

system that could efficiently and effectively balance these two parameters for a wireless 

communications system 

1.1 Background 

Error correction schemes were developed half a century ago.  In 1948,  Shannon 
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stated that coded data can be transmitted at rates near the channel capacity with an arbitrarily 

small probability of error. This statement has since led to much research in finding the most 

efficient methods of transmitting data in a noisy environment. Coding is the addition of 

redundant bits to a message in order to allow for the receiver to correct corrupted data 

without having to retransmit the message. More redundancy allows for more errors to be 

corrected upon reception. Coding transforms a block of information with length k into a 

coded block of length n. Shannon's theorem states more specifically that for any code of 

block length (n) with a rate (R=k/n) less than the channel capacity, there exists a block code 

with the probability of error (Pe) given below. E(R) is a positive function of the code rate 

specified by transition probabilities. The probability of errors can be reduced by keeping the 

rate below capacity and increasing block length [6]. 

Pe<e-"E^ (1.1) 

The extensive and powerful class of codes used in this project were discovered by Bose, 

Chaudhuri, and Hocquenghem (BCH) in 1960. 

1.2 Project Description 

This Trident research project involved designing a system using error-correcting 

codes that adapts to a continuously changing communications environment. This system 

design was developed using programs written in the MATLAB® programming environment. 

This method of simulation allows for rigorous investigation while having very flexible 

design parameters. For example, the data type, coding, modulation, and channel parameters 



all can be changed. The simulations for this research were completed in a communications 

system that modeled the characteristics of a digital cellular phone with a frequency of 881 

MHz, 9600 bit per second data rate, and a speed of 30 kilometers per hour (IS-95 standard). 

Included as part of a larger communications system, the project's central component 

is the adaptive system There are many possible methods of adaptation applicable to digital 

communications, including slowing data rates, increasing transmitter power, employing 

diversity, and variable error control with codes [1]. A variable redundancy scheme was 

decided upon because the method involved coding, yet was easy to implement. In this 

scheme, the block length remains constant and the information length changes. The family 

of BCH codes with length 63 was chosen because it has 11 possible (n, k) combinations. 

This was few enough to keep the design simple, but allowed for enough states to demonstrate 

the system adapting to the environment. Keeping the block length constant keeps the 

transmitter operating at a constant bandwidth and simplifies the receiver structure. 

Adaptation is controlled by a device that makes a decision about the current channel 

condition and then selects an appropriate level of coding. This decision is then 

communicated over a low bandwidth feedback channel to the encoder. This process of 

evaluation and decision occurs with every transmitted block. Two different evaluation and 

decision-making methods are compared during the research. 

Benice in 1966 looked at variable redundancy coding and said that this "adaptive 

technique was of little value [1]." However, the addition of greater computational ability 

brings new insight to the modern evaluation of this method in wireless environments. 



1.3 Contributions 

The entire adaptive error-correction system developed in this project incorporates 

new design aspects for the simulation and implementation of variable redundancy coding. 

A list of these specific contributions include: 

(i) Developing two methods to make adaptation decisions 

Before the adaptive system can reliably modify the current level of 

redundancy, development of the methods to properly determine the location 

of these transition decisions had to occur. One method uses statistical 

techniques to make these decisions. The other uses error information from 

the decoder to signal when more redundancy is needed. Within each method, 

threshold values control the response, so appropriate values had to be decided 

upon and evaluated. 

(ii) Constructing a working simulation of a real-world system 

A communications system is comprised of many sub-systems. Each of the 

sub-systems needs to be implemented and validated through comparison to 

known equations. Important blocks include: the random data generator, BCH 

encoder, BPSK modulator, Rayleigh Channel, additive white Gaussian noise, 

integrating receiver, and BCH decoder. Only after all of these components 

are working and validated can research into an unknown area be investigated. 

1.4 Overview 

With the given necessity for reliable data and rapid transmission, this research 
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examines an adaptive error-correction coding scheme. This method of variable 

redundancy will not only increase information sent per block when conditions are 

favorable, but will also increase redundancy as conditions deteriorate. The next section 

introduces the project design and the essential sub-systems using technical detail. The 

description of the validation and experimentation procedure follows, and this section 

concludes by presenting and comparing the results of both adaptive methods. Finally, the 

discussion is completed while drawing conclusions and listing areas of future work and 

application. 
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2. Project Design 

The project can be divided into two fundamental components: a communications 

system and an adaptive system Each is composed of many individual sub-systems. An 

introduction to each of these systems and sub-systems, with supporting examples, is now 

provided. 

2.1 Communication System 

The communications system for this project can be visualized by a multi-stage 

process which is implemented in MATLAB® code as individual sub-systems (Figure 1). 

BCH Encoder 
Length n 

BCH Decoder 

BPSK 
Modulator 

Adaptive System 

Channel Estimator 4 
Decision Device 

Transmitter 

Error Information Statistical Information 

Demodulator 
Integrating 
Receiver 

Figure 1. System Block Diagram 
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2.1.1 Data Input 

In the first stage, the data is originally analog data (i.e., voice into a microphone) that 

is converted into binary symbols by an analog/digital converter, or the data is already in a 

digital format (i.e., satellite telemetry). The "data" chosen for simulation is characterized by 

a random set of O's and l's that are equiprobable. This data was created by modifying the 

output of a random number generator in MATLAB® . A benefit of this generator function 

was its ability to be reset, so that repeated simulations can be compared with exactly the 

same data set. 

2.1.2 BCH Encoder 

Family of BCH Codes - Length (n) = 15 

1111 8 111! 0 mil 0 lilt i 
§83» 

||| <>. 1 1 0 1 

n=15    k=U    f=1    fl=73.33% 

i■ ♦♦♦♦ 
►vX%i &£4 

n=15   k=7   t=2   fl=46.66% 

:«* 

n=15    /c=5    t=3    fl=33.33% 

Information Bit ( k)       o| = Redundant Bit ( n-k)      WM = Error Bit (f) 
1 • l^y^^J-TrT■-, 

Figure 2. Graphic Code Description 
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This binary data stream of source bits is sent to the BCH encoder, where it is 

lengthened by coding bits and transformed into channel bits. Error-correcting codes rely on 

redundancy and data averaging. By the addition of redundant symbols, the uniqueness of 

each message is increased. In an optimal coding scheme, the data stream is divided into 

blocks of bits so that a percentage of the individual bits of the block can be in error without 

destroying all of the uniqueness contained in the block. To correct errors in a block, not all 

possible block sequences are used as legitimate messages. In fact, to correct t or fewer 

errors, each legitimate message must differ from each other by at least 2t+l positions. This 

minimum number of positions that a sequence must differ is called d or the Hamming 

Distance. The notations which are helpful when describing codes include n, the block code 

length, and k, the length of the information sequence. Therefore, the efficiency of a chosen 

code is the code rate, R=k/n, and the amount of redundancy is n-k. The efficiency is a good 

way to compare the performance of different codes. A visualization of these parameters is 

given in Figure 2. 

The Bose-Chaudhuri-Hocquenghem (BCH) family of error-correcting codes is used 

to combat data errors in the system Discovered in 1960, this class of cyclic codes defined 

from a generating polynomial g(x) provides a large class of easily constructed codes with 

multiple block lengths (n) and code rates (R). For BCH codes, n always is equal to a power 

of two, minus one (e.g. 15;127;255). The longer the block length, the more possible levels 

of correction exist. A BCH code with length 63 has eleven levels, while the length 127 code 

has 17. The optimum code rates for BCH codes are between 1/3 and 3/4; at other rates the 

added redundancy does little to help performance and it can actually hinder performance. 
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The mathematics involved with code generation and decoding use linear algebra and 

Galois Theory, a form of modern algebra with finite fields [5,6].  The development of the 

techniques necessary to form the generator matrix of the block code is very complex and will 

not be covered in this report. 

BCH codes can be implemented using shift registers. A shift register is a basic logic 

function available on most microprocessors and gate arrays which would allow hardware 

implementation with little difficulty. 

In summary, the encoder adds redundancy following mathematical rules, increasing 

the block of data from length k to length n. An example of the signal transformation at the 

Information length k=7 
(source bits) 

Data leng 
ihannel bi 

Coded Data length n=15 
(channel bits) 

BPSK Modulation 

Sampled 

Rayleigh Fading 

AWGN Ü 

0       10       0       11 0        1         0 

0        10        0        11 0        10        10        11 D        1 

1                     1      1 1              1             11 1 

0                   0        0 0                   0                   0 3 

llll 
'TTT                         ▼ ▼ ▼ T                         TTTT                                               ,r' 

Figure 3. Signal Transformation through a Communications System 
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encoder and subsequent portions of the communications system is shown in Figure 3. The 

constant block length («=63) was used throughout the project. 

2.1.3 BPSK Modulator 

Within the current block of data (length 63 bits), each bit is sampled four times and 

modulated into a Binary Phase Shift Keyed (BPSK) signal, where -1 represents a binary zero 

and 1 represents a binary 1. The signal now has a mean of zero, thus removing the DC 

energy. Also the greater amplitude between binary levels decreases the signal's susceptibility 

to errors. The digital waveform output is sent to the transmitter. 

2.1.4 Rayleigh Fading Channel 

During transmission, the signal is modified by a channel modeled after the specific 

expected environment. The Rayleigh fading channel represents wireless propagation in a 

time-variant multipath scenario. This environment is applicable for cellular and HF 

applications. The slowly varying channel is described as flat fading since the fading does not 

change during the length of a block. Amplitude variations in the received signal, termed 

"signal fading," are caused by the constructive or destructive addition of incoming 

waveforms. The envelope at any instant is Rayleigh distributed and gives the channel its 

name. The digital waveform beginning with amplitudes of+/- 1 may now be represented by 

a smaller or larger value as shown in Figure 3. This fading is a random process, but it does 

have memory between adjacent states [8]. The channel used in simulation represents a 

moving digital cellular phone (IS-95) transmitting data at 9600 bps. 
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2.1.5 Additive White Gaussian Noise 

Additive white Gaussian noise (AWGN) is added at the input of the receiver, where 

it represents the thermal noise at the receiver, with a zero mean and a Gaussian probability 

distribution. During simulation, each of the four sample points per bit has this noise added 

as shown in Figure 3. For different simulations, the level of the noise is modified, changing 

the signal to noise ratio (SNR). 

2.1.6 Demodulator 

The receiver integrates over every four samples (a bit) transforming a digital 

waveform back into a binary bit stream Whether the result of this integration is greater or 

less than zero determines whether a 0 or a 1 was sent. Perfect framing and synchronization 

were assumed for the simulations. This binary stream forming a coded block is sent to the 

BCH decoder where the coding and errors induced by the channel are removed. The input 

to this system is also used as an input to the statistical decision process. 

2.1.7 BCH Decoder 

The decoder being used for these codes locates and correct errors in the information, 

while removing the redundant information. Errors can only be corrected up to the level 

specific to the minimum distance (d) of each code. If this threshold is exceeded, the output 

contains an unknown amount of errors. The decoding is accomplished by using complicated 

mathematical techniques that reverse the encoding process while tolerating induced errors 

[6]. The type of decoding process used is called hard decision because it takes an input with 
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a definite value for each incoming bit, either a 0 or 1. Soft decision decoders take a bit 

stream that adds an character representing an unknown bit when a bit cannot be determined 

a 0 or 1. These soft decision decoders have better performance, but a more complex 

algorithm Besides the corrected data, another important output of the decoder is the number 

of errors that were successfully corrected. If the error correction ability has been exceeded, 

this value is replaced by an error flag. 

The MATLAB® language comes with functions that performboth BCH encoding and 

decoding. Since the functions are designed for very generalized applications, they were 

changed to handle the requirements of this specific system's input and output. The new 

functions are faster and optimized for this application. 

The information at the data output will be the same as the data which was presented 

at the source if the error correcting code was properly implemented. However, during 

periods of heavy attenuation and noise, errors are induced that cannot be corrected. 

2.2 Adaptive System 

The adaptive system includes the decision process which uses the information from 

the receiving side of the system The output from this process determines whether to 

increase, decrease, or maintain the level of redundancy currently in use. Two different 

algorithms for making this decision are examined. 

2.2.1 Statistical Adaptive Decision Method 

The statistical method of estimating the channel examines the incoming signal and 
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Figure 4. Statistical Adaptive Decision Method 

performs statistical calculations using the signal mean (mx), and the 2nd and 4th moments 

(E2,E4) to find the signal level (m) after the channel fading. This computational method can 

be visualized as finding the new location of the 0 and 1 peaks in the probability distribution 

function (PDF) [2]. The equations below were implemented in MATLAB®. 

^2 4 = [   (x~mx)   p(x)dx (2.1) 

(2.2) 

Figure 4 shows the Rayleigh channel and the estimation given by the statistical system It 

is noted that the estimate deviates from the actual value during periods of high attenuation. 

This is due to the failure of the statistical estimator. Increasing amounts of uncertainty exist 
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when attenuation is high or when the SNR is low. 

In order to adapt the coding in this first method, the system takes this estimated value 

of the channel conditions and enters a look-up table. This table lists what code is appropriate 

for a range of estimated conditions. This look-up table is generated by noting the dB level 

at which the BEP of each code crosses 10"4 in simulation. The BEP of 10"4 was arbitrarily 

chosen to represent a minimum acceptable error probability in voice transmissions. 

2.2.2 Error Based Adaptive Decision Method 

The second method's results show in Figure 5 the system reacting to the number of 

corrected errors per block. The error count output from the decoder varies with the 

attenuation of the Rayleigh channel. Instead of calculating a statistical value describing the 
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current channel, this decision algorithm looks at the errors corrected within the current block 

and compares this number to the current code's maximum correction capability. If the 

decoder corrected more than the upper threshold (75% of the maximum capability) for the 

current code (e.g., 5 errors when the code can only correct 6), the decision device will shift 

to a code with more redundancy. If the number of errors is below the lower threshold (25% 

of the maximum capability) the system will decrease the next code's redundancy. 

In both Figures 4 and 5, the solid line in the upper block shows the maximum 

correction capability of the code used for each block. This changing level is an indicator of 

the working adaptive process. Higher levels of coding reduce the code's efficiency. It is 

noted that there is a large difference in coding efficiency between these two different 

methods. The error evaluation method changes due to the code's response to fading, and 

thus tightly fits the occurring errors. The statistical method tries to match an uncertain 

estimation of real world conditions to numbers found from a formula. The inherent 

differences between these values drive the system to less efficient behavior. 

To communicate each adaptation decision, a message is sent via a low bandwidth 

feedback channel to the encoder. If small bursts of noise are creating excessive level 

changes, a smoothing factor can be added so that decisions are made from an average of 

multiple blocks. This reduction of changes reduces the load on the feedback channel, which 

may be limited in capacity by design constraints. During simulation, this feedback channel 

was assumed to be error-free and without delay. This allows necessary information about 

coding changes to be implemented before the next block is coded at the transmitter. 



20 

3. Procedure 

In order to achieve the final working simulation of the entire adaptive system, 

individual sub-systems were developed and validated. Once each sub-system was checked, 

it was incorporated into the final system 

3.1 Simulation Technique 

A Monte-Carlo approach was used for all simulations. This method works by 

sending data through the system until a statistically significant number of random events 

occur. The random events observed in communication simulations are transmission errors. 

As a greater amount of events occur, the probability of occurrence can be calculated with 

higher accuracy. The bit error probability (BEP) is calculated by dividing the total number 

of errors by the total number of bits that have be sent through the system The problem with 

this method is that for very low error probabilities it takes a very long time to simulate. For 

example, six Pentium II - 350 MHz computers calculated error probabilities, continuously 

for twelve days and did not finish. These computers had to be stopped, and then restarted 

where they had left off. The excellent fit of data to expected values validates the correct 

output of the sub-systems. However, when data did not fit the expected results, various 

problems with the design were corrected. 

3.2 Output Validation 

To ensure that the simulation of the system was operating properly, the output of each 
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subsystem was checked against well-established equations. The data collected from Monte- 

Carlo simulations was plotted generating the "waterfall" curves of error probability (BEP) 

vs. signal to noise ratio (SNR) shown in Figures 6 through 8. 

For a BPSK waveform in the presence of varying levels of AWGN, the expected 

probability of error (Pe) curve follows the function below and the graph comparing the 

experimental data to the closed form solution is shown in Figure 6 [7]. 

P = erfc (3.1) 
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Figure 7. Rayleigh Channel and AWGN 

The error probability of a BPSK signal in a Rayleigh fading channel (Pr) was tested 

in response to varying noise levels (SNR). The function plotted in Figure 7 has the form for 

a signal diversity of 1 (L=l), which simplifies greatly the generalized function below [5]. 

k=0 

(L-\ + k\ 
[!(1 + M)f 

P = 
y, 

i+y< 
Y c = mean SNR 

(3.2) 

(33) 

Finally, the hard decoded BCH error curves (PJ were plotted in Figure 8 against 

established error upper bound curves (Pub) for comparison [6,8] • The equation used is stated 

below in Eq. 3.4. One curve is generated for each of the 11 valid (n,k) BCH code pairs of 
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• o• • •       Experimental Data 
       Upper Bounds 

SNR(dB) 

Figure 8. Family of BCH Codes: Length 63 
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length «=63.  It is noted that the experimental data approaches the bounds at lower error 

rates. 

A<^=ixf"V+ey'(i-/>r1 
i=«+lV J 

(3.4) 

( 
p = erfc 

n N. 
o   J 

n = block length 

k = information length 

d = minimum distance (Hamming) 

These three figures (Figures 6-8) show that each system is properly implemented and 

outputting valid simulation results. 
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3.3 Experimental Results 

Initially, the first simulations of the system used a non-realistic channel operating at 

a SNR 5 decibels higher than during final simulations. For this type of channel, the first 

decision method (statistical estimation) performed better. But once a realistic Rayleigh 

channel was implemented, the estimator's loss in performance forced the use of a second 

method. These two methods are contrasted through simulation. 

The criteria used to compare the coding methods include efficiency, BEP, and a 

performance metric. Efficiency (r|) is the total amount of information bits transmitted 

divided by the total number of bits in blocks (total number of blocks times 63). The bit error 

8 10 12 
SNR (dB) 

Figure 9. Efficiency (r|) vs. SNR 
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probability (BEP) is the number of information bits received in error after decoding and 

correction, divided by the total number of bits of transmitted information. The performance 

metric(xF) allows both parameters to be combined and analyzed on the same graph. 

W = -logw(BE?)-r1% (3.5) 

Figures 9 through 11 show the performance of both types of adaptive systems while 

changing the level of the AWGN encountered at the receiver, thus varying the SNR. 

Examples of the minimum and maximum levels of fixed coding are shown for reference. 

The BCH codes used for this simulation have a range of Eb/No in which they operate most 

efficiently. For the length 63 family of BCH codes, this range extends upward from -0.7 dB 
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Figure 10. BEP vs. SNR 
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at a BEP of 10'4. Both methods would perform better if the BCH codes could be extended 

to operate in a lower dB range. 

The major problem encountered was that the BEP at low Eb/No was unacceptable, 

often approaching 101. Rayleigh attenuation in addition to the large amounts of AWGN 

creates a quickly changing wireless environment. The adaptive system does not provide any 

benefit when encountering such conditions. 

Two types of errors exist in this simulation: threshold errors and transition errors. 

Threshold errors occur when too many errors occur for the maximum level of redundancy. 

This occurs with fades below -5dB or during smaller fades when noise levels are high The 

inability of the system to adjust quickly creates a transition error. The current code is then 

5000 

4500 - 
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~i      r 

Statistic Method 
Error Method 
Min Coding 
Max Coding 
StatB 
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Uncoded BPSK 

■h- 
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Figure 11. Metric vs. SNR 
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caught using less redundancy than necessary for the errors encountered. Both methods have 

a limitation as to how quickly they can react to a changing channel. They both only change 

one coding level at a time. Therefore, this simulation system is designed for slowly varying 

channels. 

The Type B systems shown in the three figures above are attempts to improve the 

performance of the original adaptive systems. For "Stat B," the different levels in the look- 

up table were all shifted by a constant of -2.5 dB. This was an attempt to increase the 

system's efficiency and metric. In "Error B," the upper threshold level was moved from75% 

to 50% of the maximum correction ability. This was an attempt to improve the adaptation 

response and reduce the system's BEP. 
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4. Conclusions 

The goal of this research was to develop and implement an adaptive system that could 

efficiently and effectively balance throughput and data integrity. Overall, the statistical and 

error based adaptive methods show benefits compared to fixed coding, but the metric 

demonstrates the error evaluation method to be superior over a wide range of SNR. From 

10 dB to 15 dB this adaptive system maintains a 32% gain over minimum fixed encoding. 

This method is only surpassed by the statistical type B method at very low SNR. 

The benefits of this error-based decision method include simplicity and ruggedness. 

The adaptation decision is made from existing BCH decoder outputs and does not rely on 

further signal analysis, which makes the system simpler. The statistical method shows 

considerable problems, creating a channel estimate in severe conditions and giving higher 

than expected values. The efficiency is therefore increased at these low SNR levels, giving 

this method better metric values than the error method. The error method is rugged since 

severe noise and attenuation do not seriously affect the system's decision-making ability. 

The current problem with the error system is its lag in responding to quick changes of the 

channel, which lead to transition errors. This lag is due to the fact the redundancy is changed 

after evaluating the performance of the last block received, always keeping the system one 

block behind the current conditions. 

The two Type B systems show that performance of the original designs can be 

modified in order to enhance certain characteristics. In future investigations, the 

performance needs to be maximized for the requirements of specific applications and then- 

operational levels of SNR. 
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4.1 Challenges 

A few difficulties were encountered while working on this project. Much time at the 

beginning of the project was spent getting the system designed and programmed properly. 

MATLAB® commands and the proper construction of a communications simulation had to 

be learned. The mathematics used in encoding and decoding BCH codes are very specialized 

and are extremely complex; these procedures took patience and diligence to understand. 

Once the system was first operational, the most noticeable problem encountered was with 

the decoder. When the error levels exceeded the code's capability, the encoder sent out 

unreliable information about the number of errors that were corrected. The error adaptation 

method then reduced the level of redundancy, further worsening the problem, causing 

catastrophic failure of the system To correct this output, the core decoder function was 

modified to produce the proper output. 

4.2 Future Work 

With greater amount of time to complete further research, many related problems 

could be investigated. Keeping the system as designed, optimal parameters for the error 

evaluation system could be found. Another performance enhancement that could be 

implemented is the ability to adapt between codes more than one level apart. 

The addition of other types of codes (Reed Solomon, Convolutional or Turbo) may 

lead to gain in system performance. Also an automatic request for repeat (ARQ) system 

could be implemented when the capability of the BCH code is exceeded and threshold errors 
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are occurring.   This would ensure a much lower probability of error than shown in this 

simulation. 

4.3 Future Applications 

The implementation of this system in hardware is the next major application of this 

research. This could be done with Digital Signal Processors (DSP) or programmable gate 

arrays. It would be beneficial to see the entire system working outside of computer 

simulations. The low cost of modern hardware to perform the tasks of coding and adapting 

could make the computational overhead associated with such a system worthwhile. 

With additional improvements, this adaptive system could be incorporated into 

innovative communication systems. Two such systems include a satellite link with rain 

attenuation or ship-to-ship data links in the Navy [4]. 
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N N K N 

7 
15 

31 

63 

127 

255 

4 1 
11 1 
7 2 
5 3 
26 1 
21 2 
16 3 
11 5 
6 7 
57 1 
51 2 
45 3 
39 4 
36 5 
30 6 
24 7 
18 10 
16 11 
10 13 
7 15 
120 1 
113 2 
106 3 
99 4 
92 5 
85 6 
78 7 
71 9 
64 10 
57 11 
50 13 
43 14 
36 15 
29 21 
22 23 
15 27 
8 31 

247 1 
239 2 
231 3 
223 4 
215 5 
207 6 

255 

511 

199 7 
191 8 
187 9 
179 10 
171 11 
163 12 
155 13 
147 14 
139 15 
131 18 
123 19 
115 21 
107 22 
99 23 
91 25 
87 26 
79 27 
71 29 
63 30 
55 31 
47 42 
45 43 
37 45 
29 47 
21 55 
13 59 
9 63 

502 1 
493 2 
484 3 
475 4 
466 5 
457 6 
448 7 
439 8 
430 9 
421 10 
412 11 
403 12 
394 13 
385 14 
376 15 
367 16 

511 358 18 
349 19 
340 20 
331 21 
322 22 
313 23 
304 25 
295 26 
286 27 
277 28 
268 29 
259 30 
250 31 
241 36 
238 37 
229 38 
220 39 
211 41 
202 42 
193 43 
184 45 
175 46 
166 47 
157 51 
148 53 
139 54 
130 55 
121 58 
112 59 
103 61 
94 62 
85 63 
76 85 
67 87 
58 91 
49 93 
40 95 
31 109 
28 111 
19 119 
10 121 

N: code word length; K: message length; T: error-correction capability 
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MATLAB Files 

% 'Reall.m' 
% Real implementation of Raleigh Channel 
% John Waterston 
% February 21, 1999 
% Trident Scholar Project 
% 

clear; clc; 

%Code Parameters 
n=63; 
k_list=[7,10,16,18,24,30,36,39,45,51,57]• 
t_list=[15,13,ll,10,7,6,5,4,3,2,l] ; 

%Initial Parameters 

IclZn-l-rvrt-vwv i;„f,  »»TV    * ., ,    % SamPles Per bit in the transmission channel 
klen-length(k_list); %Number of possible values of K; Limits values of adaption position 

%Create Data Source %Prepare for worst case scenario initially 

fprintf(1,'\n'); % 0utPut blank line 
source_len=1000*input('What is the length of the Data Source(in thousands)' ■). 
smooth=mput('What is the smoothing factor wanted? (l=no smoothing): •); 
randn('state' 1) ; % Sets Random number generator to in'itial state 
source=randn(l, source_len) >0; j."j.uxax state 

ttt^tVl'iii t       /-,-,•        % Pointer to position in the data array 
maxlen-ceil source_len/k_list(1)); %Determine the number of blocks for fixed case 

%Initia?rr1V(SOU£r-len/k-liSt (klSn) ' ;      %R°Unds U*> with ceil function »Initialize Variables 

% Errors that are corrected at the receiving end c_errmax=zeros(1,maxien); 
c_errmin=zeros(1,maxien); 
c_err=zeros(1,maxien); 
errorsmax=zeros(1,maxien) ; 
errorsmin=zeros(1,maxien) ; 
errors=zeros(1,maxien); 
errmax=zeros(l,maxien); 
errmin=zeros(1,maxien); 
err=zeros(1,maxien); 
mem=zeros(1,5); 
mhat=zeros(1,maxien); 
EbNo_est=zeros(1,maxien); 
EbNo_avg=zeros(1,maxien); 
mem=zeros(1,smooth); 
uk=zeros(1,maxien); 
ut=zeros(1,maxien); 
change=zeros(1,maxien); 
change(1)=1; 
stop=0; 

% Actual errors that occur between trans and recv 

% Amount of errors detected by decoding process 

% Prepare storage of errors to calculate average 

% Values of Estimated SNR 
% Average of the SNR occuring over X number of blocks 
% Prepare storage of errors to calculate average 
% Used values of k <- Information Bits 
% Used values of t <- Correction Capability 
% Allows for count of level changes 
% Change = 1 to trigger change 

_-'.,. % Shows when adaptive has stopped 
Determine the signal to noise parameters of the Channel 
limit=input('Do you want to limit fades below a level? (-5 dB) ')• 
EbNo=mput('At what EbNo level (db) do you want to transmit? ')• 
G=0 ' ' 
%G=input('What amplifier gain in DB do you want' ')• 
G=10.-(G/10);       »Convert from dB 
speed=input('What speed(km/hr) parameter do you want to use for the doppler 

parameter(5-100)? ') ; " 

vc=;c ulmlxlenff U "2*maXlen' ^^ 881' 9600) '     %Raleigh Channel from CDR Welch; 
vc_l im=vc ; 
for i=l:maxlen 

if 10*logl0(vc(i)) < (limit) 
vc_lim(i)=10"(limit/10) ; 

end 
end 

tic 
pg = bch_gen(n,k_list(1)) 
m = length(pg) - 1; 
b=[]; 
for 0:k_list(1)-1 

% Begin Stopwatch for timing entire process 
% Create Systematic Generator Matrix for MAX case 
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end; 

,v T=t-nn+il  11  pg); * tmp is remainder of division 
[q  tmp] = gfdeconv([zeros(1, n- <k_lxst (1) ) +D , U , PSTJ - 
tmp = [tmp zeros(l, m -length(tmp))]; 

b=[b; tmp]; 

gmmax = [b eye(k_list(1))] 
% Multiply by the identity matrix 

% create Systematic Generator Matrix for MIN case 
pg = bch_gen(n,k_list(klen)); 

m = length(pg) - 1; 

^^tmpi^Saeconv^zeros.l, n- <k_list ,klen, , +i, , 1] . pa» , 
tmp = [tmp zeros(1, m -length(tmp))]; 

b=[b; tmp]; 

gmmln = [b eye(k_list(klen,,], % Multiply by the identity matrix 

% Transmitter transmits at a «n-t-n^ot^^Bit Energy) 
% Attenuation of the signal changes the effect ol nois 

%sigma=sqrt((A'2*Nb)/(2*EbNo)) Voltage of Noise7 
sigma=sqrt(Nb./(2*10.MEbNo/10))); 

% Begin outside loop 
% Change is non-zero when asking for a change; usually ♦/- 
% Define current code parameters 

% Create Systematic Generator Matrix for adaptive case 

for z=l:maxlen 
if change(z) == 1 

k=k_list(x) ,- 
t=t_list(x); 
pg = bch_gen(n,k); 
m  = length(pg) - 1; 
b=[]; 
f°r[q "tmp] = gfdeconv([zeros(1, n-k+i), 1], pg)! 

tmp = [tmp zeros(1, m -length(tmp))]; 
b=[b;. tmp] ; 

gfi [b eye(k)];        % Multiply by the identity matrix 

end; 

, , , v % Record Current values of k,t 
uk(z)=K; 
ut(z)=t; %   t Data for block from data source 
datal=getdata(source,datptr,k,     .,,,,,,^,^11)). 

datalmin=getdata(source, ((z-D^k.Usttklenn^.^     ter . 

datptr=datptr+k; 

if (datptr > source_len)&(stop=-0) 

stop=z; 
end; 

codemax = rem(datalmax * gmmax, 2); 
codemin = rem(datalmin * gmmm,2); 
code = rem(datal * gm,2); 

a_codemax=(2*codemax-l).*vc_lim(z); 
a_codemin=(2*codemin-l).*vc_lim(z); 
a_code=(2*code-l).*vc_lim(z); 

noise=sigma*randn(Nb,n); 

chanmax= ( (a_codemax-ones (l,Nb) )'+noise) *G; 

chanmin=( (a_codemin' *ones (l,Nb) ) '«owe) *G' 
channel»((a_code'*ones(l,Nb))'+noise)*G; 

% Create Scaled PDF Histogram 
l=length(channel); 
vmax=max(max(channel)); 
vmin=min(min(channel)); 
a=511/(vmax-vmin); 
hg=zeros(1,512) ; 
y=fix((channel-vmin)*a)+l; 
step=l/(size(channel,l)*sxze(channel,2)) ; 

for i=l:size(channel,1) 
for j=l:size(channel,2) 

hg(y(i,i))=hg(y(i,j))+step; 

% Advance, pointer in data 

% Acknowledge end of adaptive transmission 

% Encode Data with BCH 

% Make BPSK(antipodal) +/- 1 Volt and*Channel 

%Create AWGN dependant on EbNo of signal 

% Combine Noise and coded data 

% Voltage Max in mV 
% Voltage Min in mV 

% Define Histogram Array and initialize with zeros 
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end 

v= vmin: 
E= sum(v 
m2 =sum( 
m4 =sum( 

!(vmax-vmin)/511):vmax; 
,*hg); 
!v-E) .~2.*hg); 
;v-E).~4.*hg); 

mhat=( (3/2)*(m2)~2-(l/2)*m4)~(l/4) , 
%sigma2=sqrt(abs((m2)-mhat(z)A2)); 
if (3*m2~2>m4) | (m2>mhat~2) 

mhat=sum(abs(v).*hg); 
end; 

% Mean - Expected Value 
% Second Moment - 
% Fourth Moment 

%Noise_est(z)=10*loglO(Nb/(2*sigma2"2));  % in dB 
EbNo_est(z)=10*logl0(mhat); 
mem(rem(z,smooth)+1)=EbNo_est(z) , 
EbNo_avg(z)=sum(mem)/smooth; 

%plot(v,hg); 

recvmax=sum(chanmax)>0; 
recvmin=sum(chanmin)>0; 
recv=sum(channel)>0; 

% in dB 
% Rotate through memory block 
% Calculate current amount of average errors 

% Receive Data with an integrator detector 

% Decode received signal MAX 
[data2max,ccodemax,errmax(z)]=debch3(recvmax.n,k_list(1),t_list(1)); 
c_errmax(z)=sum(abs(recvmax-ccodemax)); % Receiver Compare 
errorsmax(z)=sum(abs(data2max-datalmax));        % Overall Compare 

% Decode received signal MIN 
[data2min,ccodemin,errmin(z)]=debch3(recvmin,n,k_list(klen),t_list(klen)), 
c_errmin(z)=sum(abs(recvmin-ccodemin)); % Receiver Compare 
errorsmin(z)=sum(abs(data2min-datalmin) ) ;        % Overall Compare 

% Decode received adaptive signal 
[data2 , ccode,err(z)]=debch3(recv, n, k,t); 
c_err(z)=sum(abs(recv-ccode)); 
errors(z)=sum(abs(data2-datal)) 

%SNR Adaption Method 
adj=0;  %for 10-4 PE case 

x_old=x; 

if EbNo_avg(z) >= 6.8 +adj 
x=ll; 

elseif EbNo_avg(z) >= 5.7 +adj 
x=10; 

elseif EbNo_avg(z) >= 4.8 +adj 
x=9; 

elseif EbNo_avg(z) >= 4.0 +adj 
x=8; 

elseif EbNo_avg(z) >= 3.5 +adj 
x=7; 

elseif EbNo_avg(z) >= 2.8 +adj 
x=6; 

elseif EbNo_avg(z) >= 2.0 +adj 
x=5; 

elseif EbNo_avg(z) >= 1.2 +adj 
x=4; 

elseif EbNo_avg(z) >= .65 +adj 
x=3; 

elseif EbNo_avg(z) >= -.3 +adj 
x=2; 

else 
x=l; 

end; 
if x -= x_old 

change(z+1)=1; 
end 
if mod(z,20) == 0 
disp (z) ; 

end; 
end; 
et=toc; 

% Receiver Compare (possible in real world) 
% Overall Compare (used for evaluation) 

% Output number to show progress every 100 blocks 

% End Main Loop 
% End Stopwatch 
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%Performance Calculation Phase 
Nu=sum(uk(l:stop))/(n*stop); 
Nu_total=(sum(uk,)/(n*maxlen); 
f=diff(10*logl0(vc)); 

disp(['DATA SHEET / PERF1.M / ', datestr(now,]); 

dS II'Efficiency of adaptive code = ■ , num2str (Nu) , ■  The total efficiency = 
',num2str(Nu_total)]); 
disp(['Total K bits = ' ,num2str (sum(uk) ) ] ) ; 
disp(f Total T bits = ',num2str(sum(ut))]); 

"  dispU'The adaptive process transmitted ',num2str(source_len),  bits in 

''dSa'Tne°number
1rfktimIi

;the code was changed is ', num2str (sumfchange, -1) ' times 
overSl'and ',num2str(sum(change(l:stoP))-D  ' times while transmitting data ]), 

disptt'The Average of the channel is ',num2str(sum(yc)/length(vc)),  dB and 
',num2str(suiti(vc(l:stop))/stop), ' dB before stopping']); ,,.f,, , dB/block 
disp(['The Average Rate of the channel is ' , num2str(sumfabs(f  /length(f)),  dB/block 

and .,num2str(sum(abs(f))/(stop-l)),' dB/block before stopping ]); 
disp(['The number of blocks transmitted with EbNo < -0.3 dB - 

' num2str(length(find(vc<-0.3))),' Before stopping = 

■'^r^Sil^rii'^Ää'iiiin.l   i-   ^str (speed,,'   km/hr,]>; 

tlZtlTTrl^T-  Design and  Run  Function  to  allow  changes   after  running program. 
figure(1) 
subplot(3,1,[12 3]) 
plot(10*logl0(vc_lim,,'r-.',; 
hold on; 
plot(EbNo_avg, 'g-'); 
plot(ut,'k-'); 
axis([l maxien -20 16]); 

%?itle"'John Waterston - Trident Project',['reall .m /', datestr (now) ]}) ; 
xlabel({['Blocks'],['EbNo = ',num2str(EbNo,]},; _ 
%xlabel({['maxlen=',num2str (maxien, ,' minlen='num2str(minien) _ 
stop=',num2str(stop)], ['Total K bits = ',num2str(sum(uk)) , '  Total T bits - 

' ,num2str (sum(ut) ) ]}, ; . 
ylabel(['Channel Attenuation (dB, & Error Correction Level  ); 
legend('Rayleigh Channel','Channel Estimation','Coding Level ) 

% Efficency and Elapsed Time and Smoothing TEXT ,       , 
%gtext({['\eta = ',num2str(Nu),'  \eta Total»',num2str(Nu total)],[ Elapsed 
Time=',num2str(et),'  Smoothing Factor=',num2str(smooth,]},; .,..., 
%gtext(a'\eta = ' , num2str (Nu_total, ] , '  Smoothing Factor=',num2str(smooth,]}>; 

BEP=',num2str(sum(errorsmin(l:minlen))/(minlen*k_list(klen,,)],['Adaptive 
BEP=',num2str(sum(errors(l:stop,,/sum(uk(l:stop,),,'  Overall 
BEP=',num2str(sum(errors,/sum(uk))]}); 

%gtext({['The adaptive process transmitted ',num2str(source_len),' bits in 
',num2str(stop),' blocks.'],... , , 
%      ['The code changed ',num2str(sum(change)-1, , ' times overall and 

;-';rS';Sli:.t'-«Ä«i,-»v *> «* 
•,num2str(sum(abs(f,,/(stop-l,,,' dB/blk before stopping'],... 
%      ['The number of blocks transmitted with EbNo < -0.3_ 
dB=',num2str(length(find(vc<10-(-0.3/10),,,,' Before stopping 

^^ne^eed^^^ Whr.  The limit was 

set at ', num2str(limit, , ' dB.']},; 
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% 'Real2.m' 
% Real implementation of Raleigh Channel 
% Error Decision process 
% John Waterston 
% March 19, 1999 
% Trident Scholar Project 
% 

clear; clc; 

%Code Parameters 
n=63; 
k_list=[7,10,16,18,24,3 0,3 6,3 9,45,51,57] ; 
t_list=[15,13,ll,10,7,6,5,4,3,2,l]; 

%Initial Parameters 
Nb=4; 
klen=length(k_list); 
x=l; 
%Create Data Source 
fprintf(1,'\n'); 
source_len=1000*input('What is the 
smooth=input('What is the smoothing 
randn('state' , 1); 
source=randn(l,source_len)>0; 
datptr=l; 
maxlen=ceil(source_len/k_list(1)); 
minlen=ceil(source_len/k_list(klen) 
%Initialize Variables 
c_errmax=zeros(1,maxien); 
c_errmin=zeros(1,maxien); 
c_err=zeros(1,maxien); 
errorsmax=zeros(1,maxien); 
errorsmin=zeros(1,maxien); 
errors=zeros(1,maxien); 
errmax=zeros(1,maxien); 
errmin=zeros(1,maxien); 
err=zeros(1,maxien); 
mem=zeros(1,5); 
mhat=zeros(1,maxien); 
EbNo_est=zeros(1,maxien); 
Err_avg=zeros(1,maxien); 
mem=zeros(1,smooth); 
uk=zeros(1,maxien); 
ut=zeros(1,maxien); 
change=zeros(1,maxien); 
change(1)=1; 
stop=0; 

% Samples per bit in the transmission channel 
% Number of possible values of K; 
% Prepare for worst case scenario initially 

% Output blank line 
length of the Data Source(in thousands)? '),• 
factor wanted? (l=no smoothing): '); 
% Sets Random number generator to initial state 

% Pointer to position in the data array 
% Determine the number of blocks for fixed case 

)  % Rounds up with ceil function 

% Errors that are corrected at the receiving end 

% Actual errors that occur between trans and recv 

% Ammount of errors detected by decoding process 

% Prepare storage of errors to calculate average 

% Values of Estimated SNR 
% Average of the SNR occuring over X # of blocks 
% Prepare storage of errors to calculate average 
% Used values of k <- Information Bits 
% Used values of t <- Correction Capability 
% Allows for count of level changes 
% Change = 1 to trigger change 
% Shows when adaptive has stopped 

%Determine the signal to noise parameters of the Channel 
limit=input('Do you want to limit fades below a level? (-5 dB) '); 
EbNo=input('At what EbNo level (db) do you want to transmit? '); 
G=0; 
%G=input('What amplifier gain in DB do you want? '); 
G=10."(G/10);  %Convert from dB 
speed=input('What speed(km/hr) parameter do you want to use for the doppler 
parameter(5-100)? '); 
[vc,len]=varchanl(1.2*maxlen,speed, 881, 9600) ;       %Raleigh Channel ((kph), (kHz), baud) 
vc=vc(1rmaxlen); 
vc_lim=vc; 
for i=ltmaxlen 

if 10*logl0(vc(i)) < (limit) 
vc_lim(i)=10~(limit/10); 

end 
end 

tic 

pg = bch_gen(n,k_list(1)); 
case 
m  = length(pg) - 1; 
b=[]; 
for i = 0:k_list(1)-1 

% Begin Stopwatch for timing entire process 

% Create Systematic Generator Matrix for MAX 
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[q, tmp] = gfdeconv([zeros(1, n-(k_list(1))+i), 1], pg); % tmp is remainder of division 

tmp = [tmp zeros(1, m -length(tmp))]; 

b=[b; tmp]; 
end ; 
gmmax = [b eye(k_list(1))]; % Multiply by the identity matrxx 
pg = bch_gen(n,k_list(klen));        % Create Systematic Generator Matrix for MIN case 

m  = length(pg) - 1; 
b= [ ] ; 
for i = 0:(k_list(klen)) - 1 

[q, tmp] = gfdeconv([zeros(1, n-(k_list(klen))+i), 1], pg) ; 
tmp = [tmp zeros(1, m -length(tmp))]; 
b=[b; tmp]; 

end ; 
gmmin = [b eye(k_list(klen))];       % Multiply by the identity matrxx 

% Transmitter transmits at a constant Ec/No(Channel Bit Energy) 
% Attenuation of the signal changes the effect of noise level. 
%sigma=sqrt((A"2*Nb)/(2*EbNo)) 
sigma=sqrt(Nb./(2*10."(EbNo/10)));   % RMS Voltage of Noise7 

for z=l:maxlen % Begin outside loop 
if change(z) ==1 % Change is non-zero when asking for a change; 

k=k_list(x); % Define current code parameters 

t=t_list(x); 
pg = bch_gen(n,k);      % Create Systematic Generator Matrix for adaptive case 

m  = length(pg) - 1; 
b=[]; 
for i = 0:k - 1 

[q, tmp] = gfdeconv([zeros(1, n-k+i), 1], pg) ; 
tmp = [tmp zeros(l, m -length(tmp))]; 
b=[b; tmp]; 

end ; 
gm = [b eye(k)]; % Multiply by the identity matrix 

end; 

uk(z)=k; * Record Current values of k,t 

ut(z)=t; 

datal=getdata(source,datptr, k);   % Get Data for block from data source 
datalmax=getdata(source,((z-1)*k_list(1))+1,k_list(1)); 
datalmin=getdata(source,((z-1)*k_list(klen))+1,k_list(klen)); 

datptr=datptr+k; % Advance pointer in data 

if (datptr > source_len)&(stop==0)% Acknowledge end of adaptive transmission 

stop=z; 
end; 

codemax = rem(datalmax * gmmax,2);        % Encode Data with BCH 
codemin = rem(datalmin * gmmin,2); 
code = rem(datal * gm,2); 

a_codemax=(2*codemax-l) .*vc_lim(z) ;       % Make BPSK (antipodal) +/- 1 Volt * channel 

a_codemin= (2 *codemin-l) .*vc_lim(z) ; 
a_code=(2*code-l).*vc_lim(z); 

noise=sigma*randn(Nb,n); % Create AWGN dependant on EbNo of signal 

chanmax=((a_codemax'*ones(l,Nb))'+noise)*G;      % Combine Noise and coded data 

chanmin=((a_codemin'*ones(l,Nb))'+noise)*G; 
channel=((a_code'»ones(l,Nb))'+noise)*G; 

recvmax=sum(chanmax)>0; % Receive Data with an integrator type dectector 

recvmin=sum(chanmin)>0; 
recv=sum(channel)>0; 

% Decode received signal MAX 
[data2max,ccodemax,errmax(z)]=debch3(recvmax,n,k_list(1),t_list(1)); 
c_errmax(z)=sum(abs(recvmax-ccodemax)); % Receiver Compare 
errorsmax(z)=sum(abs(data2max-datalmax));        % Overall Compare 

% Decode received signal MIN 
[data2min,ccodemin,errmin(z)]=debch3(recvmin,n,k_list(klen),t_list(klen)); 
c_errmin(z)=sum(abs(recvmin-ccodemin) ) ; % Receiver Compare 
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errorsmin(z)=sum(abs(data2min-datalmin)); 
% Decode received adaptive signal 

[data2,ccode,err(z)]=debch3(recv,n,k,t); 
c_err(z)=sum(abs(recv-ccode)); 
errors(z)=sum(abs(data2-datal)); 

if err(z) == -1 
err(z)= t; 

end 

% Overall Compare 

% Receiver Compare (possible in real world) 
% Overall Compare (used for evaluation) 

mem(rem(z,smooth)+1)=err(z); 

Err_avg(z)=ceil(sum(mem)/smooth); 
BEPguess=sum(errors)./sum(uk); 

x_old=x; 

change(z +1)= 0; 
%75% 
if Err_avg(z) > .35*t_list(x); 

X=X-1; 
change(z+1)=1; 
if x < 1 

x=l; 
end 

elseif Err_avg(z) < .25*t_list(x); 
x=x+l; 
change(z+1)=1; 
if x > length(k_list) 

x=length(k_list); 
end 

end 

% Rotate through memory block replacing old 
error values 

if mod(z,20) == 0 
blocks 

disp(z); 
disp(BEPguess); 

end; 

% Output number to show progress every 100 

end; 
et=toc; 

% End Main Loop 
% End Stopwatch 

datestr(now)]); 

1,num2str(Nu), The total efficiency = 

bits in ',num2str(stop),' 

%Performance Calculation Phase 
Nu=sum(uk(1:stop))/(n*stop); 
Nu_total=(sum(uk))/(n*maxlen); 
f=diff(10*logl0(vc)); 
clc 
disp(['DATA SHEET / PERF1.M / ' 
disp(' ' ) ; 
disp(['Efficiency of adaptive code 
',num2str(Nu_total)]); 
disp(['Total K bits = ',num2str(sum(uk))]); 
disp([ 'Total T .bits = ' , num2str (sum(ut) ) ] ) ; 
disp(['The adaptive process transmitted ',num2str(source_len), 
blocks.']); 
disp(['The number of times the code was changed is ',num2str(sum(change)-1),' times 
overall and ',num2str(sum(change(1:stop))-1) , ' times while transmitting data']); 
disp(['The Average of the channel is ',num2str(sum(vc)/length(vc)),' dB and 
',num2str(sum(vc(l:stop))/stop),' dB before stopping']); 
disp(['The Average Rate of the channel is ' ,num2str(sumfabs(f))/length(f)), ' dB/block and 
',num2str(sumfabs(f))/(stop-1)),' dB/block before stopping']); 
disp(['The number of blocks transmitted with EbNo < -0.3 dB = 
',num2str(length(find(vc<-0.3))),' Before stopping = 
' ,num2str(length(find(vc(1:stop)<-0.3)))]); 
disp(['The speed used in the Raleigh Channel is ',num2str(speed),' km/hr.']); 

^Performance Output Phase 
%Process Graphing - Design and Run Function to allow changes after running program. 
figure(1) 
subplot (3,1, [1 2 3] ) 
%for i=l:maxlen 
%     if errors(i) -= 0 
%       stem(i,errors(i) , 'filled'); 
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%      hold on; 
%    end ; 
% end; 
%plot(10*logl0(vc), 'r: '); 

plot(10*logl0(vc_lim), 'r- . '); 
hold on; 
plot(Err_avg,'g.'); 
plot(ut,'k-'); 
%plot(err,'d'); 

axis([l maxien -20 16]); 
hold off; 

%title({'John Waterston - Trident Project',['reall.m /' , datestr(now)]}); 
%xlabel({['maxlen=',num2str(maxien),' minlen=',num2str(minien),' 
stop=',num2str(stop)],['Total K bits = ',num2str(sum(uk)), '  Total T bits = 
',num2str(sum(ut))]}) ; 
xlabel({['Blocks'],['EbNo = ' , num2str (EbNo) ]}) ; 
ylabel(['Channel (dB) & Error Correction Level']); 
legend('Rayleigh Channel','Errors Corrected', 'Coding Level') 

% Efficency and Elapsed Time and Smoothing TEXT 
%gtext({['\eta = ',num2str(Nu),'  \eta Total=•,num2str(Nu_total)],['Elapsed 
Time=',num2str(et),'  Smoothing Factor=',num2str(smooth)]}); 

% BEP TEXT , 
%gtext({['Max BEP=',num2str(sum(errorsmax(l :maxlen))/(maxlen*k_list(1) ) ) ,   Mm 
BEP=',num2str(sum(errorsmin(l:minlen))/(minlen*k_list(klen)))],['Adaptive 
BEP=',num2str(sum(errors(1:stop))/sum(uk(l:stop))) , '  Overall 
BEP=',num2str(sum(errors)/sum(uk))]}); 

%gtext ({ ['The adaptive process transmitted ' ,num2str (source Jen) , ' bits in 
',num2str(stop),' blocks.'],... 
%      ['The code changed ',num2str(sum(change)-1) , ' times overall and 
■ ,num2str(sum(change(1:stop))-l), ' times before stopping'],... 
%      ['The avg EbNo of the channel is ',num2str(sum(10*logl0(vc))/length(vc)),' dB and 
' ,num2str(sum(10*logl0(vc(l:stop)))/stop), ' dB before stopping'],... 
%      ['The avg EbNo Rate of the channel is ',num2str(sum(abs(f))/lengthff)),' dB/blk and 

' ,num2str(sum(abs(f))/(stop-1)), ' dB/blk before stopping'],... 
%      ['The number of blocks transmitted with EbNo < -0.3 
dB=',num2str(length(find(vc<10'(-0.3/10)))),' Before stopping 
= ',num2str(length(find(vc(l:stop)<10"(-0.3/10))))], ... . 
%      ['The speed used in the Raleigh Channel is ',num2str(speed),' km/hr.  The limit was 

set at ', num2str(limit),' dB.']}); 
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function [b, a, gN, fd, L, fc] = raychan(vkph, fc, Rs, fs) 
% [b, a, gN, fd, L, fc] = raychan(vkph, fc, Rs, fs): Designs a 
% channel noise filter to have the normalized doppler frequency fd. 
% The inputs are: 
% vkph = vehicle velocity in kilometers per hour 
% fc = carrier frequency in Khz 
% Rs = symbol rate 
% fs = samples per symbol 
% The vectors b and a contain the direct form filter 
% coefficients. A simple fixed-point algorithm is used to 
% find an fc value that gives the desired fd. gN is the 
% noise scaling factor used to scale the noise variance at 
% the filter output to unity via z[n] = sqrt(gN)*y[n]. 
% by Mark A. Wickert 7/94. 

%*********************************************************** 
% Begin by convertiing the input parameters to the normalized doppler, fd: 
fd = vkph*le3/6CT2/(fs*Rs)*fc*le6/3e8; 

% The noise filter cutoff frequency will be very close to fd, but 
% at slow vehicle velocity may be too small for filter realization. 
% To compensate for this a lower fd cuttoff of 0.02 5 is set. Interpolation 
% (upsampling) by the factor L is invoked as needed to keep fc_up >= 0.25. 
% This is equivalent to increasing the vehicle velocity by factor L, thus 
% the filtered noise sequences must be 'slowed' back down by using an interpolation 
% routing such as MATLABs interpK) or the DSP tool box function interp(). 

% Find fd_up, the upsampled normalized doppler frequency. 
L = 1; 
fd_up = fd; 
while fd_up < 0.02 5, 

L = L + 1; 
fd_up = L*fd; 

end; 

%disp('Normalized doppler and upsampled doppler:') 

%disp(['fd = ' num2str(fd) ', fd_up = ' num2str(fd_up) ', L = ' num2str(L)]) 
%disp('Filter cutoff frequency search status:') 

% Design the noise filter 
%tol '= 0.0005; 
tol = .02 * fd_up; % 2% of fd_up tolerance 
trials = 1; 

% initial guess for fc is just the normalized doppler itself 
p 0 = fd_up; 
fd_hat = doppler(pO); 
% display iteration status at start: 
%disp(['trial #' num2str(trials) ', fc_hat = ' num2str(p0) ... 
%      ', fd_hat = ', num2str(fd_hat) ', error = ' num2str(abs(fd_up-fd_hat))]) 
p = pO - fd_hat + fd_up; 

% search for fc value - no checks for not converging 
% included at present. 
while abs(p - pO) > tol, 

% try a new value 
trials = trials + 1; 
pO = p; 
fd_hat = doppler (pO); 

%      display iteration status at each trial: 
%      disp(['trial #' num2str(trials) ', fc_hat = ' num2str(p0) ... 
%      ', fd_hat = ', num2str(fd_hat) ', error = ' num2str(abs(fd_up-fd_hat))]) 

p = pO - fd_hat + fd_up; 
end; 

% Obtain final design filter coefficients 
[b,a] = chan_mod(pO,10); 
fc = pO; 
% Solve for the noise (power) scaling factor 
gN = 1/ (2*quad8 ( ' smomO ' , 0, .5 , [ ] , [] , b, a) ) ; 
%*** + ***t******t***H**t******tt**t**Jr******tt**t**i**it*tt* 

end; 
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function [rwarm,Zf1,Zf2] = mk_warm(b, a, gN, L, N) 
% [rwarm,Zfl,Zf2] = mk_warm(b, a, gN, L, N) 
% Used to warm-up the Rayleigh channel 
% (i.e. runs enough noise through the filters to get 
% past the initial transients) 
% b,a     Rayleigh filter coefficients from raychan.m 
% gN      noise scaling factor from raychan.m 
% L       interpolation factor L from raychan.m 
% N     = # samples (typically ~ Ns*2000)to get transients out 
% rwarm = Rayleigh weights '  _ 
% Zfl   = final condition of the filter for use in mk_wgts.m 
% Zf2   = final condition of the filter for use in mk_wgts.m 

% find required length of noise vector prior to interpolation 

nx = ceil(N/L)+l; 

%disp('Generating white sequence....') 
% create complex noise vector for input to filter 
x = randn(nx,l) + j*randn(nx,1) ,-pause(1) 

%disp('Filtering the white sequence ') 
% filter and gain scale to unity variance the complex white noise 

[x,Zfl] = filter(b,a,x); 
x=x*sqrt(gN/2); _ 
%disp ( 'Upsampling using linear interpolation.  ) 
% Begin by placing L-l zeros between each point of x 

ny = L*nx; 
rwarm = zeros(l,ny); 
rwarm(l:L:ny) = x; 
% Now filter with h[n] = 1 - |n|/L for |n| <= L-l 
nh = (1:L)/L; 
h = [nh fliplr(nh(l:L-l))]; 
[rwarm,Zf2] = filter(h,1,rwarm); 
%      trim length for non integer N/L values 
rwarm = rwarm(1:fix(N)); 
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function [rw,Zfl,Zf2] =mk_wgtsl(b, a, gN, L, N, zfl, zf2) 
% [rw,Zfl,Zf2] = mk_wgtsl(b, a, gN, L, N, zfl, zf2) 
% Creates a complex vector of length N containing Rayleigh 
% channel weights for the channel noise filter 
% coefficients b and a and interpolation factor L. 
% Zfl & Zf2 are the final filter states originally from mk_warm.m 
% The variance of yy = {wl + j wQ} is one, 
% thus in a comm channel application no additional scaling 
% by sqrt(2) is required. 
% by Mark Wickert 8/94. 

% find required length of noise vector prior to interpolation 
%nx = ceil(N/L) +1; 
nx = round(N/L); 

%disp('Generating Rayleigh channel weights....') 
% create complex noise vector for input to filter 
x = randn(nx,l) + j*randn(nx,1); 

% filter and gain scale to unity variance the complex white noise 
[x,Zfl] = filter(b,a,x,zfl); 
x=x*sqrt(gN/2); 

% Begin by placing L-l zeros between each point of x 
ny = L*nx; 
rw = zeros(1,ny); 
rw(l:L:ny) = x; 
clear x 

% Now filter with h[n] = 1 - |n|/L for |n| <= L-l 
nh = (1:L)/L; 
h = [nh fliplr(nh(l:L-l))]; 
clear nh 
[rw,Zf2] = filter(h,l,rw,zf2); 

%      trim length for non integer N/L values 
%rw = rw(l:N); 
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function fd=doppler(fc) 

% fd = doppler(fc): returns the normalized doppler frequency 
% for an input filter cutoff frequency, fc. Filter parameters 
% are fixed at 10 dB ripple using the function chan_mod.m. Numerical 
% integration is performed using the MATLAB function quad8(). 
% by Mark A. Wickert 7/94. 

[b,a]=chan_mod(fc,10); 

fd=sqrt(2*quad8('smom2 ' ,0, .5, [] , [] ,b, a) /quad8 ( ' smomO ' , 0, .5, [ ] , [] ,b, a) ; 

end; 

function 12 = smom2(F, b, a) 

% 12 = smom2(F, b, a): Produces a frequency response 
% magnitude vector times f*2 corresponding to 
% frequency values in F. This form is suitable for use 
% with the numerical integration formula quad8(). 
% by Mark A. Wickert 7/94. 

W = 2*pi*F; 
12 = freqz (b, a, W) ; 
12 = (abs(I2) ."2) .*(F."2) ; 
end; 
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function bch_pg = bch_gen(n,k) 
%returns generator polynomial for the bch code with length n and data k. 
%little error trapping and correction is implemented 
%using MATLAB's Comm library GF(2'm) functions. 
%John Waterston - USNA '99 
%24 SEP 98 

%create primitive polynomial for GF(2'm) 
dim = ceil(log2(n)); 
m = gfprimdf(dim); 
%compute minimum polynomial 
if k == n - dim 

%trivial case where primitive poly is generator poly 
bch_pg = m; 

else 
%generate cyclotomic cosets and use to create min poly's 
cs = gfcosets(dim); 
[n_cs, m_cs] = size(cs); 
pi = gfminpol(cs(2:n_cs,1),m); %does multiplication 

n_terms = 0; 
n_i = 0; 
pm= []; 
while ((n_terms < (n-k)) & (n_i+l < n_cs)) 

n_i = n_i + 1; 
n_terms = n_terms + sum(~isnan(cs(n_i+l,:))); 
pm = [pm; pl(n_i, :)]; 

end ; 

bch_pg = gftrunc(pm(l,:)); 
[n_pm, m_pm] = size(pm); 
if n_pm > 1 

for i = 2 : n_pm 
bch_pg = gfconv(bch_pg, gftrunc(pm(i, :))) ; %multiplies the min poly's 

end; 
end; 

end; 

%end of bch_gen.m 
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function [msg,ccode,err]=debch3(rec_code,n, k, t); 

% debch - Decodes a block of data that is BCH encoded 
% John Waterston 
% October 20, 1998 
% 

[n_code, m_code] = size(rec_code); 
dim = ceil(log2(m_code)); 

ord = gfprimdf(dim);  %the complete list of all element in GF(2Mim) 
tp = gftuple([-l:m_code- 1]', ord); 

%Initialize error vector at the very beginning 
err = zeros(n_code,1); 
msg = zeros(n_code,k); 
ccode = zeros(n_code,m_code); 

for n_i = l:n_code  %passes each row to core, one at a time. 
%profile johncore 
[msg(n_i,:>, err(n_i), ccode(n_i, :)]=... 

johncore(rec_code(n_i,:), m_code, dim, k, t, tp) ; 
%profile report, profile done 
%break 

end; 
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function [msg, err, ccode] = johncore(code, pow_dim, dim, k, t, tp) 

tp_num = tp * 2.~[0:dim-l]'; 
tp_inv(tp_num+l) = 0:pow_dim; 
% syndrome computation. 
% initialization, find all non-zeros to do the calculation 
non_zero_itm = find(code > 0) - 1; 
len_non_z_itm = length(non_zero_itm); 
syndrome = -ones(l, 2*t); 

% syndrome number is 2*t where t is error correction capability 
if len_non_z_itm > 0 

tmp = l:2*t; 
syndrome(tmp) = non_zero_itm(l) * tmp; 
if len_non_z_itm > 1 

for n_k = 2 : len_non_z_itm 
syndrome(tmp) = gfplus(syndrome(tmp), non_zero_itm(n_k) * tmp, tp_num, 

tp_inv); 
end; 

end; 
end; 
% complete syndrome computation 

% Determine the error-location polynomial. 
%profile jwwelocp 
[sigma, err] = jwwelocp(syndrome, t, tp, pow_dim, 0); 
%profile report, profile done 

% computation of error-location numbers. 
loc_err = zeros(1, pow_dim); 

% in case of failed or no error, skip. 
num_err = length(sigma) - 1; 
if (-err) & (num_err > 0) 

cnt_err = 0; 
pos_err = []; 
er_i = 0; 
while (cnt_err < num_err) & (er_i < pow_dim * dim) 

test_flag = sigma(l); 
for er_j = 1 : num_err 

if sigma(er_j +1) >= 0 
% The following 6 lines is equivelent to 
% tmp = gfmul(er_i * er_j, sigma(er_j+l), tp); 
tmp = er_i * er_j ; 
if (tmp < 0) | (sigma(er_j+l) < 0) 

tmp = -1; 
else 

tmp = rem(tmp + sigma(er_J + 1), pow_dim); 
end; 
test_flag = gfplus(test_flag, tmp, tp_num, tp_inv); 

end; 
end; 
if test_flag < 0 

cnt_err = cnt_err + 1; 
pos_err = [pos_err, rem(pow_dim-er_i, pow_dim)]; 

end; 
er_i = er_i + 1; 

end; 
pos_err = rem(pow_dim+pos_err, pow_dim); 
pos_err = pos_err + 1; % shift one location because power zero is one. 
loc_err(pos_err) = ones(1, cnt_err); 
err = num_err; 

else 
if err 

err = -1; 
end; 

end; 
% completed error location detection 

% correct the error 
ccode = rem(code + loc_err, 2); 
msg = ccode(pow_dim-k+l : pow_dim); 
%-- end of johncore  
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function [sigma, err] = jwwelocp(syndrome, t, tp, pow_dim, err) 
%John Waterston - USNA '99 
%2 October 1998 

[tp_n, tp_m] = size(tp); 
tp_num = tp * 2.'[0 : tp_m-l]'; 
tp__inv(tp_num+l) = 0:pow_dim; 

% use simplified algorithm 
mu = [-1/2,. 0:t] ' ; 
sigma_mu = [zeros(t+2,1), -ones(t+2, t)]; 
d_mu = [0; syndrome(1); zeros(t, 1)]; 
l_mu =[0 0 2* (l:t)] '; 
mu2_l_mu = 2*mu - l_mu; 
% iterative start with row three. The first two rows are filled. 

for de_i = 3:t+2 
% no more effort to failed situation 
if (d_mu(de_i - 1) < 0) | err 

sigma_mu(de_i, :) = sigma_mu(de_i-l, :); 
else 

% find another row proceeding to row de_i -1 
% d_mu equals to zero 
% and 2*mu - l_mu is the largest. 
indx = find(d_mu(l:de_i - 2) >= 0); 
rho  = find(mu2_l_mu(indx) == max(mu2_l_mu(indx))); 
rho = indx(rho(length(rho))); 

% by (6.28) 
% shifted = gfmul(d_mu(de_i - 1), pow_dim - d_mu(rho), tp) ; 
% shifted = gfmul(shifted, sigma_mu(rho, :), tp)'; 
% multiply inreplace the above two lines. 
shifted = -ones(l, t + 1); 
if (d_mu(de_i - 1) >= 0) & (pow_dim - d_mu(rho) >= 0) 

tmp = rem(pow_dim - d_mu(rho) + d_mu(de_i -1), pow_dim); 
indx = find(sigma_mu(rho, :) >= 0); 
for de_k = 1 : length(indx) 

shifted (indx (de_k) ) = rem(tmp + sigma_mu (rho, mdx(de_k)), pow_dim) ; 

end; 
end; 
% end multiply 

shifting = (mu(de_i - 1) - mu(rho)) * 2; 

% calculate new sigma_mu 
%if ~isempty(find(sigma_mu(l:de_i-2,max(l,t-shifting+2):t+l) >-0)) 

% disp('A potential for error is posible') 
% disp(['de_i=',num2str(de_i), ' shifting=',num2str(shifting)]); 
% disp(sigma_mu) 
% disp(['shifted=',mat2str(shifted)]); 

ifn-isempty(find(shifted(max(t-shifting+2, 1) : t+1) >= 0)Impossibly not needed- jww 
% more than t errors, BCH code fails. 
err = 1; 

else 
% calculate the new sigma 
shifted = [-ones(l, shifting) shifted(l:t-shifting+1)]; 
sigma_mu(de_i, :) = gfplus(sigma_mu(de_i-l,:), shifted, tp_num, tp.inv); 

end; 
end ; 
l_mu(de_i) = max(find(sigma_mu(de_i,:) >= 0)) - 1; 

% calculate d_mu. It is not necessary to do so if mu(de_i) == t 
if de_i < t+2 

% the constant term 
d_mu(de_i) = syndrome(mu(de_i) * 2 + 1); 
indx = find(sigma_mu(de_i, 2:t) >= 0); 

for de_j = 1 : length(indx) 
de_j_tmp = indx(de_j); 
% Before the "end", it is equivalent to 
% d_mu(de_i) = gfadd(d_mu(de_i), ... 
% gfmul (sigmajtiu (de_i, de_j_tmp+l) , ... 
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% syndrome(mu(de_i) * 2 - de_j_tmp + 1), tp), tp) ; 
tmp = syndrome(mu(de_i) * 2 - de_j_tmp + 1) ; 
if (tmp < 0) | (sigma_mu(de_i, de_j_tmp +1) < 0) 

tmp = -1; 
else 

tmp = rem(tmp + sigma_mu(de_i, de_j_tmp + 1), pow_dim); 
end; 
d_mu(de_i) = gfplus(d_mu(de_i), tmp, tp_num, tp_inv); 

end; 
end; 

% calculate 2*mu-l_mu 
mu2_l_mu(de_i) = mu(de_i) * 2 - l_mu(de_i); 

end; 

% the error polynomial 
sigma = sigma_mu(t+2, :); 
% truncate the redudancy 
indx = find(sigma >= 0); 
sigma = sigmafl:max(indx)); 
% completed constructing error polynomial 

%-- end of errlocp(jww) -- 
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%BPSKCAL.m 
^Generates the BPSK output and expected waterfall graph 
%John Waterston - Trident Project 
%October 7, 1998 

EbNo=-5:l:12; 
%in DB 

semilogy(EbNo,commq(sqrt(2*10.-(EbNo/10)))); %plot and compute Pe 

grid 
ylabel('P_e') ; 
xlabel('E_b/N_o (dB) ') ; 
%title('BPSK Signal'); 
axis([-5 15 le-8 1] ) ; 
hold on; 

EbNo = linspace(.5,11,10) ; 
N_bits=10000; 
Nb=4; 
BEP=zeros(l,length(EbNo)); 

for i = 1:length(EbNo) 
errors=0; 
loop=0; 
tic 
pe=commq(sqrt(EbNo(i))); 
while (N_bits*loop) < (10000/pe) 

loop=loop+l; 
sigma=sqrt(Nb/(2*EbNo(i))); 
data=(randn(l,N_bits)>0); 
a_data=data*2-l; 
noise=sigma*randn(Nb,N_bits); 
channel=(a_data'*ones(l,Nb))'+noise; 
recv=sum(channel)>0; 
errors=errors+sum(abs(data-recv)); 
BEP(i)=errors/(N_bits*loop); 

end 

fprintfd, '%5g  %12g    %12.10f      %5g    \n',errors,loop*N_bits,BEP(i),t) 
%plot(10*logl0(EbNo(i)),BEP, 'rd'); 

end 
plot(10*logl0(EbNo),BEP, 'rd'); 
legend('Expected Curve','Experimental Data'); 
hold off; 
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% 'bchbnd2.ni' 
% BCH comparison to bounds 
% BPSK vs. BCH of various (n,k) 
% John Waterston 
% Trident Project 
% February 26, 1999 
% This creates a BCH matrix with the BEP (-4 dB to 9 dB) for all 11 63 codes 

%Code Parameters 
n=63; 
k_list=[7,io,16,18,24,3 0,3 6,3 9,45,51,57] ; 
t_list=[15,13,11,10,7,6,5,4,3,2,1] ; 

a=input('What code do you want to simulate? (1-11) ') ; 
bl=input('What dB do you wish to begin at? ' ) ; 
b2=input('What dB do you wish to end at? ' ) ; 

EbNo=-4:1:9; % This creates the general matrix for all to use. 
BEP=zeros(length(k_list),length(EbNo)); 
tloop=zeros(length(k_list),length(EbNo)); 
errors=zeros(length(k_list),length(EbNo)); 
load bnd 
for code=a:a;  %length(k_list):-l:5; 

fn=['tst',num2str(a) ] 
k=k_list(code); 
t=t_list(code); 
N_bits=500*n; % do not change values... 
K_bits=5 00*k; 
Nb=4; 

pg = bch_gen(n,k); 
m  = length(pg) - 1; 
b=[]; 
for i = 0:k - 1 

[q, tmp] = gfdeconv([zeros(1, n-k+i), 1], pg); % tmp is remainder of division 
tmp = [tmp zeros(l, m -length(tmp))]; 
b=[b; trapp- 

end; 
gm = [b eye(k) ] ; 

for i = find(EbNo == bl):find(EbNo == b2)        % Eb is for channel bits 
loop=0; 
tic 
while ((loop*K_bits) < fix(1000/(Pb(code,i)))) 

loop=loop+l; 
sigma=sqrt (Nb/ (2*10' (EbNo (i) /10) )) ; % RMS Voltage of Noise 
datal_v=(randn(l,K_bits)>0); % Generate Random Data 
datal_m = vec2mat(datal_v, k) ; 
codel = rem(datal_m * gm, 2); % Encode Data with BCH 
codel=codel';codel=codel(:)'; % Matrix to Vector 
a_code=(2*codel-l); % Make BPSK 
noise=sigma*randn(Nb,N_bits); % AWGN 
channel=(a_code'*ones(l,Nb))'+noise; 
recv=sum(channel)>0; 
recv=vec2mat(recv, n); 
data2_m=debch(recv,n,k,t); % Decode recv 
data2_m=data2_m'; 
data2_v=data2_m(:)'; 
errors(code,i)=errors(code,i)+sum(abs(datal_v- data2_v)); 

end 
e_time=toc; 
tloop(code,i)=loop; 
BEP(code,i)=errors(code,i)/(K_bits*loop); 
fprintfd, '%5g  %12g    %12.10f       %5g    %5g \n\... 

errors(code,i),loop*K_bits,BEP(code,i),e_time,EbNo(i)); 
zl=['BEP']; 
z2=['tloop']; 
z3=['errors'] ; 
z4=['code']; 
save(fn,zl,z2,z3,z4) ; 

end; 
end; 
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% 'Raycal.m' 
% Raleigh Channel calibration 
% John Waterston 
% February 22, 1999 
% Trident Scholar Project 
% 

%clear; 
clc; 

Nb=4; 

loop=l; 
len=5 0000; 
errors=zeros(1,11), 
z=zeros(1,11); 

% Samples per bit in the transmission channel 

tic 
N_bits=len*1.2; 
randn('state',0); 
[b,a,gN,Fd,L,fc]=raychan(3 0,881,2 4 00,D ; 

for EbNo=0:3.5:35; 
[ray_wgts,Zfl,Zf2]=mk_warm(b,a,gN,L,N_bits+2000); 
while errors(loop) < fix(-12500*logl0(1/(4*EbNo))) 

[ray_wgts,Zf1,Zf2]=mk_wgtsl(b,a,gN,L,N_bits,Zf1,Zf2) 
vc=abs(ray_wgts(l:len)); 
len=length(vc); 
data=randn(1,len)>0; 
a_code=(2*data-l). *vc; 
sigma=sqrt(Nb/(2*1CT (EbNo/10))); 

of Noise 
noise=sigma*randn(Nb,len); 

Create AWGN dependant on EbNo of signal 
channel=((a_code'*ones(l,Nb))'+noise); 

Raleigh 
recv=sum(channel)>0; 
errors(loop)=errors(loop)+sum(abs(recv-data)); 

evaluation and analysis) 
z(loop)=z(loop)+1; 

end 
loop=loop+l; 
disp(loop-1); 

end 
et=toc; 

EbNo=0:3.5:42; 
BEP=errors./(len.*z); 
BPSK=0.5*(l-sqrt((10."(EbNo./10))./(1+10.*(EbNo./10)))); 

% From Proakis p.781 diversity=l 

% RMS Voltage 

% Multiplies by 

% Overall Compare (used for 

% End Stopwatch 

^Performance Calculation Phase 
disp(['DATA SHEET / raycal.m / 
disp ( ' ' ) ; 
^Performance Output Phase 

datestr(now)]), 

figure(1) 
subplot(3,1,[1 2 3]) 
%semilogy(EbNo(1:11),BEP(1:11); 
semilogy(EbNo,BPSK,'b-',EbNo(1:11),BEP,'rd'); 
legend('Expected Curve (BPSK)','Experimental Data'); 
grid; 
axis([0 40 le-4 1]); 
%title({'John Waterston - Trident Project',['raycal.m /',datestr(now)J)) 
xlabel('E_b/N_o'); 
ylabel('P_r'); 
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% 'dat_edit.m' 
% Edit BCH data files 
% John Waterston 
% 1/29/99 
% 

clear; clc; 

n=63; 
k_list=[7,10,16,18,2 4,3 0,3 6,3 9,45,51,57] ; 
t_list=[15,13,ll,10,7,6,5,4,3,2,l] ; 

%Code Parameters 

EbNo_base=-4:1:9; % Base Matrix 

disp('Data Editor for the BCH (63,K) family of codes'); 
disp('Written by John Waterston 2/11/99 for Trident Project'); 

a=0; 
while a >= 0 

disp ( ' ' ) ; 
a=input('Do you want to combine new [0] data files [-1] to end? ' ) ; 
disp ( ' ' ) ; 
if a==0 

% Take Data from new data file 
what 
a=input('What tst?.mat file do you wish to load? (Enter value of CODE(l-ll)) ','s') 

%b=num2str(t_list(find(k_list==str2num(a)) ) ) ; 
%c=input(' (Other file apnds)  ' , ' s ' ) ; 

fname=['tst',a, ' .mat']; 
load(fname); 
disp(['File ',fname,' has been loaded...']); 
disp(['The data runs from ',num2str(EbNo_base(1)),' to 

',num2str(EbNo_base(length(EbNo_base))),' dB']); 
disp(['Incremented by ',num2str(EbNo_base(2)-EbNo_base(1)),' dB steps.']); 

disp(' ') ; 
d=input('Do you wish to combine this data with the master BCH data? [l]=yes [0]=no 

') 
if d > 0 

load master 
for i=l:length(EbNo_base) 

code=str2num(a); 
master_err(code,i)=master_err(code,i)terrors(code,i); 
master_bits(code,i)=master_bits(code,i)+(tloop(code,i).*k_list(code)*500); 
if master_bits(code,i) -= 0 

master_BCH(code,i)=master_err(code,i)/master_bits(code,i); 
end 
save master master_BCH master_bits master_err 

end 
end 

end 
end 

disp('End of Session'); 
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% 
% rdatprint2.m' 
% John Waterston 
% This prints the current data for the 63 family of codes. 

% 1/29/99 
% 

clear; 
clc; 

n=63 ; 
k_list=[7,10,16,18,24,30,36,39,45,51,57]; 
t_list=[15,13,ll,10,7,6,5,4,3,2,l]; 

disp('BCH code printer') 
disp('Written by John Waterston'); 
disp('for Trident Project on March 2, 1999'); 
disp ( ' ' ) ; 

a=input('Enter (1) for channel bits (2) for info bits (3) for metric: '); 

b=0; c=[]; 
while b>=0 & b~=99 . no      , ,, 

b=input('What codes do you wish to print? (-1 to stop, 99 for all)  ), 

c=[c b]; 
end ; 
c=c(l:length(c)-l); 
if isempty(c) 

c=l:l:ll; 
end 

d=input('Would you like to print the upper bounds with your data? (l=yes 0=no) '); 

load master2; 
load bounds2; 
EbNo=-4:l:9; 

for i=l:length(c) 

lf semilogy(EbNo,master_BCH(c(i), :), 'ro: '); % For a channel bit - 

EbNo in dB ,-,„•■., n 1 title(['BCH Code Family of (63,M) - Channel Bits ]); 

hold on; 

if d == 1 .   , ,h_M. % For a channel bit - EbNo in 
semilogy(EbNoZ,Pb(c(l),:), D-   ), 

dB 
end 

elseif a == 3 
for j=l:14 

if master_BCH -= 0 ,,.,■,,,, j , > 
semilogy(EbNo(3),(n/k_list(c(i)).*-logl0(master_BCH(c(i),i))), rd ); 

end 
end 

elseif a == 4 

plot(EbNof(10*logl0(n/k_list(c(i)))),(n/k_list(c(i))).*-logl0(master_BCH(c(i),:)),'r'); 

else 
nebno=EbNo+(10*logl0(n/k_list(c(i)))); 
semilogy (nebno,master_BCH(c (i) , :) , 'r ' ) 
title(['BCH Code Family of (63,M) - Information Bits']); 

end; 
end; 

if d==l 
legend('Experimental Data','Upper Bounds ); 

end 
ylabel('P_e'); 
xlabel('dB'); 
%clc 

axis([-4 9 le-8 1]); 
hold off 
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% 'varest.m' 
% Estimate Variance 
% Used in Development of Statistical Adaption Method 
% John Waterston 
% November 12, 1998 

clear 
clc 

n=63 ; 
sigma=2; 
Nb=4 ; 

channel=randn(l, n)>0; 
channe1=channe1*2-1; 
noise=sigma*randn(Nb,n);      % AWGN 
channel=(channel''ones(l,Nb))'+noise; 

l=length(channel); 
vmax=max(max(channel)); % Voltage Max in mV 
vmin=min(min(channel)); % Voltage Min in mV 
a=511/(vmax-vmin); % 1/(Bin Size) 
hg=zeros(1,512); % Define Histogram Array and initialize with 
zeros 
x=fix((channel-vmin)*a)+ 1 ; 

% Create PDF Histogram (Scaled) 
step=l/(size(channel,1)*size(channel, 2 ) ) ; 
for i = l:size(channel, 1) 

for j=l:size(channel,2) 
hg(x(i,j))=hg(x(i,j))+step; 

end; 
end; 
E=0; 
v=vmin:((vmax-vmin)/511):vmax; 

% Mean - Expected Value 
for i=lrlength(hg) 

E=E+v (i) *hg ('i) ; 
end; 

% Second Moment - 
m2 = 0; 
for i=l:length(hg) 

m2=m2+(v(i)-E)~2*hg(i) ; 
end; 

% Fourth Moment 
m4 = 0; 
for i=l:length(hg) 

m4=m4+(v(i)-E)^4*hg(i) ; 
end ; 

mhat=( (3/2)*(m2)"2-(l/2)*m4)'(l/4) ; 

sig2=sqrt(m2-mhatA2); 

disp(['The input value of sigma is: ',num2str(sigma)]); 
disp(['The estimated value of sigma is: ',num2str(sig2)]); 
disp(['The error is: ',num2str(abs((sigma-sig2)/sigma*100)),'%']); 

% Display Data 
figure(1) 
plot(v,hg); 
title(['John Waterston, Variance Estimation']); 
xlabel('PDF(x)'); 
ylabel('Probability'); 


